Cartesian Position
Definition and Properties
As shown in Figure 1, Cartesian position of an origin of frame \(F_\alpha\) with respect to an origin of frame \(F_\beta\) resolved about the axes of frame \(F_\gamma\) is denoted as:
\[
\mathbf{r}^{\gamma}_{\beta \alpha} =
\left[
\begin{array}{ccc}
x^{\gamma}_{\beta \alpha} & y^{\gamma}_{\beta \alpha} & z^{\gamma}_{\beta \alpha}
\end{array}
\right]^T.
\]
Properties | |
---|---|
Inverse | \(\mathbf{r}^{\gamma}_{\beta \alpha} = -\mathbf{r}^{\gamma}_{\alpha \beta}\) |
Addition | \(\mathbf{r}^{\gamma}_{\beta \alpha} = \mathbf{r}^{\gamma}_{\delta \alpha} - \mathbf{r}^{\gamma}_{\delta \beta} = \mathbf{r}^{\gamma}_{\beta \delta} + \mathbf{r}^{\gamma}_{\delta \alpha}\) |
Resolving Axes Transformation | \(\begin{align*}\mathbf{r}^{\gamma}_{\beta \alpha} &= \mathbf{R}^{\gamma}_{\delta} \mathbf{r}^{\delta}_{\beta \alpha} \\ \mathbf{r}^{\beta}_{\beta \alpha} &= \mathbf{R}^{\beta}_{\delta} \left( \mathbf{r}^{\delta}_{\beta \delta} + \mathbf{r}^{\delta}_{\delta \alpha} \right) \\ &= \mathbf{r}^{\beta}_{\beta \delta} + \mathbf{R}^{\beta}_{\delta} \mathbf{r}^{\delta}_{\delta \alpha} \end{align*}\) |