Skip to content

Perturbed Poses via Rotation Vector

Definition

Suppose a point \(\mathbf{v}\) is transformed by \(\mathbf{T} \in SE(3)\) with corresponding Lie algebra vector \(\boldsymbol{\xi}\), and the result is \(\mathbf{T} \mathbf{v}\). Note that \(\mathbf{v}\) is in homogeneous coordinates. Left perturb \(\mathbf{T}\) with \(\Delta \mathbf{T} = \exp \left[ \Delta \boldsymbol{\xi} \right]_\times\) with Lie algebra vector \(\Delta \boldsymbol{\xi} = \left[ \begin{array}{cc} \Delta \boldsymbol{\ell} & \Delta \boldsymbol{\rho} \end{array} \right]^T\). We have:

\[ \begin{align} \frac{\partial \left( \mathbf{T} \mathbf{v} \right)}{\partial \Delta \boldsymbol{\xi}} &= \lim_{\Delta \boldsymbol{\xi} \rightarrow \mathbf{0}} \frac{\exp \left[ \Delta \boldsymbol{\xi} \right]_\times \exp \left[ \boldsymbol{\xi} \right]_\times \mathbf{v} - \exp\left[\boldsymbol{\xi} \right]_\times \mathbf{v}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \rightarrow \mathbf{0}} \frac{\left( \mathbf{I} + \left[ \Delta \boldsymbol{\xi} \right]_\times \right) \exp \left[ \boldsymbol{\xi} \right]_\times \mathbf{v} - \exp \left[ \boldsymbol{\xi} \right]_\times \mathbf{v}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \rightarrow \mathbf{0}} \frac{\left[ \Delta \boldsymbol{\xi} \right]_\times \exp \left[ \boldsymbol{\xi} \right]_\times \mathbf{v}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \rightarrow \mathbf{0}} \frac{\left[ \begin{array}{cc} \left[ \Delta \boldsymbol{\rho} \right]_\times & \Delta \boldsymbol{\ell} \\ \mathbf{0}^T & 0 \end{array} \right] \left[\begin{array}{c} \mathbf{R} \mathbf{v} + \mathbf{t} \\ 1 \end{array} \right]}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \rightarrow \mathbf{0}} \frac{\left[ \begin{array}{cc} \left[\Delta \boldsymbol{\rho} \right]_\times \left( \mathbf{R} \mathbf{v} + \mathbf{t} \right) + \Delta \boldsymbol{\ell} \\ \mathbf{0}^T \end{array} \right]}{\left[ \begin{array}{cc} \Delta \boldsymbol{\ell} & \Delta \boldsymbol{\rho} \end{array} \right]^T} \\ &= \left[ \begin{array}{cc} \mathbf{I} & -\left[ \mathbf{R} \mathbf{v} + \mathbf{t} \right]_\times \\ \mathbf{0}^T & \mathbf{0}^T \end{array} \right]. \end{align} \]