Skip to content

Derivative and Perturbation Definitions

Definitions

There are four types of derivative and perturbation definitions as summarized in the table below.

Function Type Conditions Derivative and Perturbation
Vector Space to Vector Space Given a function \(f \ : \ \mathbb{R}^m \rightarrow \mathbb{R}^n\) with operator \(\left\{+, - \right\}\) and \(\mathbf{x} \in \mathbb{R}^m\) \(\begin{align*} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} &\triangleq \lim_{\delta \mathbf{x} \rightarrow \mathbf{0}} \frac{f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})}{\delta \mathbf{x}} \in \mathbb{R}^{n \times m} \\ f(\mathbf{x} + \Delta \mathbf{x}) &\approx f(\mathbf{x}) + \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Delta \mathbf{x} \in \mathbb{R}^n \end{align*}\)
\(SO(3)\) to \(SO(3)\) Given a function \(f \ : \ SO(3) \rightarrow SO(3)\) with operator \(\left\{ \oplus, \ominus \right\}\), \(\mathbf{R} \in SO(3)\) and a local, small angular variation \(\boldsymbol{\theta} \in \mathbb{R}^3\) \(\begin{align*}\frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} &\triangleq \lim_{\delta \boldsymbol{\theta} \rightarrow \mathbf{0}} \frac{f(\mathbf{R} \oplus \delta \boldsymbol{\theta}) \ominus f(\mathbf{R})}{\delta \boldsymbol{\theta}} \\ &= \lim_{\delta \boldsymbol{\theta} \rightarrow \mathbf{0}} \frac{\left[ \ln \left( f^{-1}(\mathbf{R}) f(\mathbf{R} \exp \left[ \delta \boldsymbol{\theta} \right]_\times ) \right) \right]_{-\times}}{\delta \boldsymbol{\theta}} \in \mathbb{R}^{3 \times 3} \\ f(\mathbf{R} \oplus \Delta \boldsymbol{\theta}) &\approx f(\mathbf{R}) \oplus \frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} \Delta \boldsymbol{\theta} \\ &\triangleq f(\mathbf{R}) \exp \left[ \frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} \Delta \boldsymbol{\theta} \right]_\times \in SO(3) \end{align*}\)
Vector Space to \(SO(3)\) Given a function \(f \ : \ \mathbb{R}^m \rightarrow SO(3)\) with operator \(\left\{+, \ominus \right\}\) and \(\mathbf{x} \in \mathbb{R}^m\) \(\begin{align*} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} &\triangleq \lim_{\delta \mathbf{x} \rightarrow \mathbf{0}} \frac{f(\mathbf{x} + \delta \mathbf{x}) \ominus f(\mathbf{x})}{\delta \mathbf{x}} \\ &= \lim_{\delta \mathbf{x} \rightarrow \mathbf{0}} \frac{\left[ \ln \left(f^{-1}(\mathbf{x}) f(\mathbf{x + \delta \mathbf{x}}) \right) \right]_{-\times}}{\delta \mathbf{x}} \in \mathbb{R}^{3 \times m} \\ f(\mathbf{x} + \Delta \mathbf{x}) &\approx f(\mathbf{x}) \oplus \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Delta \mathbf{x} \triangleq f(\mathbf{x}) \exp \left( \left[ \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Delta \mathbf{x} \right]_\times \right) \in SO(3) \end{align*}\)
\(SO(3)\) to Vector Space Given \(f \ : \ SO(3) \rightarrow \mathbb{R}^n\) with operator \(\left\{\oplus, - \right\}\) and \(\boldsymbol{\theta} \in \mathbb{R}^3, \ \mathbf{R} \in SO(3)\) \(\begin{align*} \frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} &\triangleq \lim_{\delta \boldsymbol{\theta} \rightarrow \mathbf{0}} \frac{f(\mathbf{R} \oplus \boldsymbol {\theta}) - f(\mathbf{R})}{\delta \boldsymbol{\theta}} \\ &= \lim_{\delta \boldsymbol{\theta} \rightarrow \mathbf{0}} \frac{f(\mathbf{R} \exp \left[ \delta \boldsymbol{\theta} \right]_\times) - f(\mathbf{R})}{\delta \boldsymbol{\theta}} \in \mathbb{R}^{n \times 3} \\ f(\mathbf{R} \oplus \Delta \boldsymbol{\theta}) &\approx f(\mathbf{R}) + \frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} \Delta \boldsymbol{\theta} \\ &\triangleq f(\mathbf{R}) + \exp \left[ \frac{\partial f(\mathbf{R})}{\partial \boldsymbol{\theta}} \Delta \boldsymbol{\theta} \right]_\times \in \mathbb{R}^n \end{align*}\)

References

  1. Barfoot, T., State Estimation for Robotics
  2. SolĂ , J., Quaternion Kinematics for the Error-State Kalman Filter, 2017