Matrix Groups and Lie Theory
Group Definition
A group is a set \(G\) with an operation "\(\circ\)" on the elmenets of \(G\) such that it satisfies:
- Closure: \(\forall g_1, g_2 \in G, g_1 \circ g_2 \in G\).
- Associativity: \(\forall g_1, g_2, g_3 \in G, g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3 = g_1 \circ g_2 \circ g_3\).
- Identity: \(\exists g_0 \in G, \ \text{s.t.} \ \forall g \in G, g_0 \circ g = g \cdot g_0 = g\).
- Invertibility: \(\forall g \in G, \exists g^{-1} \in G, \ \text{s.t.} \ g \circ g^{-1} = g_0\).
An example group is \(G = (\mathbb{Z}, +)\).
Matrix Groups
Group Relationships
Group Name | Definition |
---|---|
General Linear Group, \(GL(n)\) | Let \(\mathcal{M}(n)\) be a set of all real \(n \times n\) matrices. The general linear group, \(GL(n)\), consists of all \(\mathbf{A} \in \mathcal{M}(n)\) for which \(\text{det}(\mathbf{A}) \neq 0.\) In order words, the set of all \(n \times n\) non-singular (real) matrices with matrix multiplication is \(GL(n)\). |
Special Linear Group, \(SL(n)\) | All matrices \(\mathbf{A} \in GL(n)\) for which \(\text{det}(\mathbf{A}) = 1\) form a group called the special linear group \(SL(n)\). Note that the inverse of \(\mathbf{A}\) is also in this group since \(\text{det}(\mathbf{A}^{-1}) = \text{det}(\mathbf{A})^{-1}\). |
Affine Group, \(A(n)\) | An affine transformation \(L \ : \ \mathbb{R}^n \rightarrow \mathbb{R}^n\) is defined jointly by a matrix \(\mathbf{A} \in GL(n)\) and a vector \(\mathbf{b} \in \mathbb{R}^n\) such that \(L(\mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{b}.\) The set of all such affine transformations is called the affine group of dimension \(n\) and is denoted by \(A(n)\). Note that \(L\) defined above is not a linear map unless \(\mathbf{b} = \mathbf{0}\). |
Orthogonal Group, \(O(n)\) | A matrix \(\mathbf{A} \in \mathcal{M}(n)\) is called orthogonal if it preserves the inner product, i.e. \(\langle \mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.\) The set of all orthogonal matrices forms the orthogonal group \(O(n)\), which is a subgroup of \(GL(n)\). For an orthogonal matrix \(\mathbf{R}\), we have \(\langle \mathbf{R} \mathbf{x}, \mathbf{R} \mathbf{y} \rangle = \mathbf{x}^T \mathbf{R}^T \mathbf{R} \mathbf{y} = \mathbf{x}^T \mathbf{y}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,\) which suggests that \(\mathbf{R}^T \mathbf{R} = \mathbf{R} \mathbf{R}^T = \mathbf{I}\), or equivalently \(O(n) = \left\{ \mathbf{R} \in GL(n) \ \| \ \mathbf{R}^T \mathbf{R} = \mathbf{I} \right\}.\) The above shows that for any orthogonal matrix \(\mathbf{R}\), we have \(\text{det}(\mathbf{R}^T \mathbf{R}) = \left(\text{det}(\mathbf{R}) \right)^2 = \text{det}(\mathbf{I}) = 1\), such that \(\text{det}(\mathbf{R}) \in \left\{ \pm 1 \right\}\). |
Special Orthogonal Group, \(SO(3)\) | The subgroup of \(O(n)\) with \(\text{det}(\mathbf{R}) = +1\) is called the special orthogonal group \(SO(n)\). Note that \(SO(n) = O(n) \cap SL(n)\). \(SO(3)\) is a Lie group and represents rotations. |
Euclidean Group, \(E(n)\) | A Euclidean transformation \(L\) from \(\mathbb{R}^n \rightarrow \mathbb{R}^n\) is defined by an orthogonal matrix \(\mathbf{R} \in O(n)\) and a vector \(\mathbf{t} \in \mathbf{R}^n\) such that: \(L \ : \ \mathbb{R}^n \rightarrow \mathbb{R}^n; \quad \mathbf{x} \rightarrow \mathbf{R} \mathbf{x} + \mathbf{t}\). The set of all such transformations is called the Euclidean group \(E(n)\). It is a subgroup of the affine group \(A(n)\). Embedded by homogeneous coordinates, we have \(E(n) = \left\{\left(\begin{array}{cc}\mathbf{R} & \mathbf{t} \\\mathbf{0} & 1\end{array}\right) \ \|\ \mathbf{R} \in O(n), \mathbf{t} \in \mathbb{R}^n\right\}.\) |
Special Euclidean Group, \(SE(n)\) | For \(E(n)\), if \(\mathbf{R} \in SO(n)\), we have the special Euclidean group \(SE(n)\). \(SE(3)\) is a Lie group and represents poses. |
Lie Group and Lie Algebra
Lie group refer to a group with smooth manifold properties. Smoothness implies that we can use differential calculus on the manifold; or roughly, if we change the input to any group operation by a little bit, the output will only change by a little bit. With every matrix Lie group is associated a Lie algebra, which consists of a vector space \(\mathbb{V}\) over some field \(\mathbb{F}\), and a binary operation \(\left[\cdot, \cdot \right]\), called the Lie bracket. The following properties are satisfied for Lie Algebra \((\mathbb{V}, \mathbb{F}, \left[\cdot, \cdot\right])\):
- Closure: \(\forall \mathbf{X}, \mathbf{Y} \in \mathbb{V}; \ \left[ \mathbf{X}, \mathbf{Y} \right] \in \mathbb{V}\).
-
Bilinearity: \(\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbb{V}; \ a,b \in \mathbb{F}\), we have:
\[ \begin{align} &\left[a \mathbf{X} + b \mathbf{Y}, \mathbf{Z} \right] = a \left[\mathbf{X}, \mathbf{Z} \right] + b \left[ \mathbf{Y}, \mathbf{Z} \right] \\ &\left[\mathbf{Z}, a \mathbf{X} + b \mathbf{Y} \right] = a \left[ \mathbf{Z}, \mathbf{X} \right] + b \left[ \mathbf{Z}, \mathbf{Y} \right]. \end{align} \] -
Alternating: \(\forall \mathbf{X} \in \mathbb{V}; \ \left[ \mathbf{X}, \mathbf{X} \right] = 0\).
- Jacobi identity: \(\forall \mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbb{V}; \ \left[ \mathbf{X}, \left[ \mathbf{Y}, \mathbf{Z} \right] \right] + \left[ \mathbf{Z}, \left[ \mathbf{X}, \mathbf{Y} \right] \right] + \left[ \mathbf{Y}, \left[ \mathbf{Z}, \mathbf{X} \right] \right] = 0\).
The vector space of a Lie algebra is the tangent space of the associated Lie group at the identity element of the group, and it completely captures the local structure of the group.
References
- Barfoot, T., State Estimation for Robotics
- Ma., Y., An Invitation to 3-D Vision: From Images to Models, 2001