Identities
This section gives some useful matrix identities.
Vector-by-Vector Identities
\[
\begin{alignat}{2}
&\frac{\partial (\mathbf{A} \mathbf{x})}{\mathbf{x}} = \mathbf{A}, \\
&\mathbf{x}^T \mathbf{y} = x_1 y_1 + \ldots + x_n y_n, \\
&\frac{\partial (\mathbf{y}^T \mathbf{x} )}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^T \mathbf{y})}{\partial \mathbf{x}} &&=
\left[
\begin{array}{ccc}
\partial (\mathbf{x}^T \mathbf{y}) / \partial x_1 & \ldots & \partial (\mathbf{x}^T \mathbf{y}) / \partial x_n
\end{array}
\right] \\
& &&=
\left[
\begin{array}{ccc}
y_1 & \ldots & y_n
\end{array}
\right] \\
& &&= \mathbf{y}^T.
\end{alignat}
\]
The above used numerator layout. The denominator layout will yield in \(\mathbf{A}^T\) and \(\mathbf{y}\).
Scalar-by-Vector Identities
For quadratic forms:
\[
\begin{align}
\mathbf{x}^T \mathbf{A} \mathbf{x} &=
\left[
\begin{array}{ccc}
x_1 & \ldots & x_n
\end{array}
\right]
\left[
\begin{array}{ccc}
A_{11} & \ldots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \ldots & A_{nn}
\end{array}
\right]
\left[
\begin{array}{c}
x_1 \\
\vdots \\
x_n
\end{array}
\right] \\
&=
\left[
\begin{array}{ccc}
\sum_i x_i A_{i1} & \ldots & \sum_i x_i A_{in}
\end{array}
\right]
\left[
\begin{array}{c}
x_1 \\
\vdots \\
x_n
\end{array}
\right] \\
&= \sum_{i, j} x_i x_j A_{ij}.
\end{align}
\]
The partial derivative will be then:
\[
\begin{align}
\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\mathbf{x}} &=
\left[
\begin{array}{ccc}
\partial (\mathbf{x}^T \mathbf{A} \mathbf{x}) / \partial x_1 &
\ldots &
\partial (\mathbf{x}^T \mathbf{A} \mathbf{x}) / \partial x_n
\end{array}
\right] \\
&=
\left[
\begin{array}{ccc}
\sum_j x_j A_{1j} + \sum_i x_i A_{i1} & \ldots &
\sum_j x_j A_{nj} + \sum_i x_i A_{in}
\end{array}
\right] \\
&=
\left[
\begin{array}{ccc}
\sum_j x_j A_{1j} & \ldots & \sum_j x_j A_{nj}
\end{array}
\right] +
\left[
\begin{array}{ccc}
\sum_i x_i A_{i1} & \ldots & \sum_i x_i A_{in}
\end{array}
\right] \\
&= \mathbf{x}^T \mathbf{A}^T + \mathbf{x}^T \mathbf{A}.
\end{align}
\]
If \(\mathbf{A}\) is a symmetric matrix, then \(\mathbf{A} = \mathbf{A}^T\), which yields to:
\[
\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\mathbf{x}} = 2 \mathbf{x}^T \mathbf{A}.
\]
Again this is in numerator layout. In denominator layout it will be \(2 \mathbf{A}^T \mathbf{x}\).