Cholesky Decomposition
Definition
Every symmetric, positive definite matrix \(\mathbf{A}\) can be decomposed into a product of a unique lower triangular matrix \(\mathbf{L}\) and its transpose:
\[
\begin{align}
&\mathbf{A} = \mathbf{L} \mathbf{L}^T,
\end{align}
\]
or equivalently:
\[
\begin{align}
&\left[
\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}
\right] =
\left[
\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}
\right]
\left[
\begin{array}{ccc}
L_{11} & L_{21} & L_{31} \\
0 & L_{22} & L_{32} \\
0 & 0 & L_{33}
\end{array}
\right] \\
&=
\left[
\begin{array}{ccc}
L^2_{11} & L_{21} L_{11} & L_{31} L_{11} \\
L_{21} L_{11} & L^2_{21} + L^2_{22} & L_{31} L_{21} + L_{32} L_{22} \\
L_{31} L_{11} & L_{31} L_{21} + L_{32} L_{22} & L^2_{31} + L^2_{32} + L^2_{33}
\end{array}
\right].
\end{align}
\]
Hence, \(\mathbf{L}\) can be obtained as:
\[
\mathbf{L} =
\left[
\begin{array}{ccc}
\sqrt{A_{11}} & 0 & 0 \\
A_{21} / L_{11} & \sqrt{A_{22} - L^2_{21}} & 0 \\
A_{31} / L_{11} & (A_{32} - L_{31} L_{21}) / L_{22} & \sqrt{A_{33} - L^2_{31} - L^2_{32}}
\end{array}
\right],
\]
or equivalently:
\[
\begin{align}
L_{jj} &= (\pm) \sqrt{A_{jj} - \sum^{j - 1}_{k = 1} L^2_{jk}}, \\
L_{ij} &= \frac{1}{L_{jj}} \left(A_{ij} - \sum^{j - 1}_{k = 1} L_{ik} L_{jk} \right) \quad \text{for} \ i > j.
\end{align}
\]
Applications
Pseudo-Inverse
For a full-rank \(\mathbf{A}\) matrices (observable systems), we have:
\[
\begin{align}
\mathbf{A} \mathbf{x} &= \mathbf{y} \\
\mathbf{A}^T \mathbf{A} \mathbf{x} &= \mathbf{A}^T \mathbf{y} \\
\mathbf{x} &= \left( \mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T \mathbf{y} \\
\mathbf{A}^{\dagger} &= \left( \mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T.
\end{align}
\]
Assume that back-substitution is quicker to compute than the full inverse. We know that \(\mathbf{A}^T \mathbf{A}\) is symmetric and positive definite.