Vector Norms
Definitions
A vector norm on \(\mathbb{R}^n\) is a function \(f: \ \mathbb{R}^n \rightarrow \mathbb{R}\) that satisfies the following three properties:
- \(f\) is nonnegative: \(f(\mathbf{x}) \geq 0\), \(\forall \mathbf{x} \in \mathbb{R}^n\).
- \(f\) satisfies the triangle inequality: \(f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})\), for all \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n\).
- \(f\) is homogeneuous: \(f( t \mathbf{x}) = |t| f(\mathbf{x})\), for all \(\mathbf{x} \in \mathbb{R}^n\) and \(t \in \mathbb{R}\).
- \(f\) is definite: \(f(\mathbf{x}) = 0\) if and only if \(\mathbf{x} = \mathbf{0}\).
p-norms are defined as:
The 1, 2, and infinity norms are defined as:
Properties
Property 1. Cauchy-Schwartz inequality
Property 2. Preservation
2-norm is preserved under orthogonal transformation. Let \(\mathbf{Q} \in \mathbb{R}^{n \times n}\) be orthogonal and \(\mathbf{x} \in \mathbb{R}^n\). Then:
Absolute and Relative Errors
Let \(\hat{\mathbf{x}} \in \mathbb{R}^n\) be an approximation of \(\mathbf{x} \in \mathbb{R}^n\). For a given vector norm \(|| \cdot ||\), the absolute error in \(\hat{\mathbf{x}}\) is defined as:
If \(\mathbf{x} \neq \mathbf{0}\), then the relative error in \(\hat{\mathbf{x}}\) is defined as:
Convergence
A sequence \(\left\{ \mathbf{x}^{(k)} \right\}\) of \(n\)-vectors converges to \(\mathbf{x}\) if: