Skip to content

IMU Measurements

Gravity Model

Gravity Gravity

Figure 1 Gravity, gravitational acceleration, centrifugal acceleration (Groves, p71)

Figure 1 shows that the net acceleration due to gravity, \(\mathbf{g}\), is the sum of gravitational acceleration, \(\boldsymbol{\gamma}\), (due to the mass distribution within Earth) and the outward centrifugal acceleration (due to the Earth's rotation). The algebraic representation in frame \(F_{\gamma}\) for the body \(b\) is:

\[ \mathbf{g}^\gamma_{b} = \boldsymbol{\gamma}^{\gamma}_{ib} - \boldsymbol{\Omega}^\gamma_{i e} \boldsymbol{\Omega}^\gamma_{i e} \mathbf{r}^\gamma_{eb}. \]

Depending on the resolving frame as well as the gravity model being used, the formulation of net acceleration can differ. The following table is from Groves.

Resolving Frame Gravity Model
ECI When working in an ECI, it is common to neglegt Earth's rotation rate. Refer to Sola for more information.
\(\begin{align*} \mathbf{g}^i_{b} &= \boldsymbol{\gamma}^i_{ib} \\ \boldsymbol{\gamma}^i_{ib} &= -\frac{\mu}{\left\|\mathbf{r}^i_{ib}\right\|^3} \left\{ \mathbf{r}^i_{ib} + \frac{3}{2}J_2 \frac{R_0^2}{\left\|\mathbf{r}^i_{ib}\right\|^2} \left\{ \begin{array}{c} \left[ 1 - 5(r^i_{ib,z} / \left\|\mathbf{r}^i_{ib}\right\|)^2 \right] r^i_{ib, x} \\ \left[1 - 5(r^i_{ib,z} / \left\|\mathbf{r}^i_{ib}\right\|)^2 \right] r^i_{ib, y} \\ \left[ 3 - 5(r^i_{ib,z} \ \left\|\mathbf{r}^i_{ib}\right\|)^2 \right] r^i_{ib, z} \end{array} \right\} \right\} \end{align*}\)
ECEF \(\begin{align*} \mathbf{g}^e_{b} &= \boldsymbol{\gamma}^e_{ib} + \boldsymbol{\omega}^2_{ie} \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right] \mathbf{r}^e_{eb} \\ \boldsymbol{\gamma}^e_{ib} &= -\frac{\mu}{\left\|\mathbf{r}^e_{eb}\right\|^3} \left\{ \mathbf{r}^e_{eb} + \frac{3}{2}J_2 \frac{R_0^2}{\left\|\mathbf{r}^e_{eb}\right\|^2} \left\{ \begin{array}{c} \left[ 1 - 5(r^e_{eb,z} / \left\|\mathbf{r}^e_{eb}\right\|)^2 \right] r^e_{eb, x} \\ \left[ 1 - 5(r^e_{eb,z} / \left\|\mathbf{r}^e_{eb}\right\|)^2 \right] r^e_{eb, y} \\ \left[ 3 - 5(r^e_{eb,z} / \left\|\mathbf{r}^e_{eb}\right\|)^2 \right] r^e_{eb, z} \end{array} \right\} \right\} \end{align*}\)
NED \(\begin{align*} \mathbf{g}^n_b &= \boldsymbol{\gamma}^{n}_{ib} + \boldsymbol{\Omega}^{n}_{ib} \boldsymbol{\Omega}^{n}_{ib} \mathbf{r}^{n}_{eb} \\ &= \boldsymbol{\gamma}^{n}_{ib} + \mathbf{R}^{n}_e \boldsymbol{\Omega}^{e}_{ib} \mathbf{R}^{e}_n \mathbf{R}^{n}_e \boldsymbol{\Omega}^{e}_{ib} \mathbf{R}^{e}_n \mathbf{r}^{n}_{eb} \\ &= \boldsymbol{\gamma}^{n}_{ib} + \mathbf{R}^{n}_e \boldsymbol{\Omega}^{e}_{ib} \boldsymbol{\Omega}^{e}_{ib} \mathbf{R}^{e}_n \mathbf{r}^{n}_{eb} \\ &= \boldsymbol{\gamma}^{n}_{ib} + \boldsymbol{\omega}^2_{ie} \mathbf{R}^{n}_{e} \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \mathbf{R}^{e}_n \mathbf{r}^{n}_{eb} \\ &= \boldsymbol{\gamma}^{n}_{ib} + \boldsymbol{\omega}^2_{ie} \left[ \begin{array}{ccc} \text{sin}^2 L_b & 0 & \text{cos} L_b \text{sin} L_b \\ 0 & 1 & 0 \\ \text{cos}L_b \text{sin}L_b & 0 & \text{cos}^2 L_b \end{array} \right] \mathbf{r}^n_{eb} \end{align*}\)

\(J_2\) is the Earth's second harmonic gravitational constant and is equal to \(1.082627 \times 10^{-3}\) and \(\mu\) is the Earth's gravitational constant and its WGS 84 value is \(3.986004418 \times 10^{14} \ m^3 s^{-2}\).

Accelerometer

Accelerometers measure specific force which is the non-gravity acceleration. This is equivalent to the total acceleration with respect to an inertial frame (\(\mathbf{a}^b_{ib}\)) minus the net acceleration due to gravity defined previously along its input axis. Depending on how the sensor frame is defined, accelerometer triad should measure about \(+1\mathbf{g}\) at rest if the input axis is up, and about \(-1\mathbf{g}\) if the input axis is down (if the input axis is up, the total acceleration along the input axis is zero and the gravitational component along the input axis is \(-1\mathbf{g}\)).

If we let the sensor frame align with the body frame, the accelerometer measurement is:

\[ \begin{align} \tilde{\mathbf{f}}^{b}_{ib} &= \mathbf{a}^b_{ib} - \mathbf{g}_b. \end{align} \]

Gyroscope

Gyro triad measures the angular rate of the IMU body with respect to the inertial frame in the body axes, i.e., \(\tilde{\boldsymbol{\omega}}^b_{ib}\).

Integrated IMU Measurements

Some IMUs integrate the specific force and angular rate over the sampling interval, \(\tau_i\) producing the so-called "delta-\(v\)"s and "delta-\(\theta\)"s:

\[ \begin{align} \tilde{\boldsymbol{v}}^b_{ib} &= \int^t_{t - \tau_i} \tilde{\mathbf{f}}^b_{ib}(t')dt' \\ \tilde{\boldsymbol{\alpha}}^b_{ib} &= \int^t_{t - \tau_i} \tilde{\boldsymbol{\omega}}^b_{ib}(t')dt'. \end{align} \]