Discrete Optimization Models
Discrete Optimization Models
A discrete optimization or an integer programming model is an optimization problem where some of the optimization variables are required to take integer values:
\[
\begin{align}
\min \quad& f(\mathbf{x}) \\
\text{s.t.} \quad& g_i(\mathbf{x}) \leq b_i, \ i = 1, \ldots, m \\
& \mathbf{x} \in \mathbb{R}^{n - p} \times \mathbb{Z}^p.
\end{align}
\]
If the objective and constraints of a discrete optimization problem consists of linear functions then it is known as a linear discrete optimization problem or a mixed integer linear program:
\[
\begin{align}
\min \quad& \mathbf{c}^T \mathbf{x} \\
\text{s.t.} \quad& \mathbf{A} \mathbf{x} \geq \mathbf{b} \\
& \mathbf{x} \in \mathbb{R}^{n - p} \times \mathbb{Z}^p.
\end{align}
\]
Discrete optimization involes optimization over a nonconvex set of feasible solutions.
Binary Optimization Models
If the discrete variables are required to be binary, then it is a binary optimization model:
\[
\begin{align}
\min \quad& f(\mathbf{x}) \\
\text{s.t.} \quad& g_i (\mathbf{x}) \leq b_i, \ i = 1, \ldots, m \\
&\mathbf{x} \in \mathbb{R}^{n - p} \times \left\{ 0, 1 \right\}^p.
\end{align}
\]
Examples
Indivisible Decisions
Given a set of supply ports and a set of demand ports with given supplies and demans, we are interested in formulating how many cargo ships to lease for each route (supply-demand pair) at minimum cost:
\[
\begin{align}
\min \quad& \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} \\
\text{s.t.} \quad& \sum_{i \in I} x_{ij} \geq d_{j}, \ \forall j \in J \\
& \sum_{j \in J} x_{ij} \leq s_i, \ \forall i \in I \\
& x_{ij} \leq U y_{ij}, \ \forall i \in I, j \in J \\
& x_{ij} \geq 0, \ y_{ij} \in \mathbb{Z}_{+}, \ \forall i \in I, j \in J.
\end{align}
\]
Yes/No Decisions
Given a set of projects with their returns, costs, and an overall budget, we would like to decide whether to invest in a project or not to maximize returns:
\[
\begin{align}
\max \quad& \sum^{n}_{j = 1} r_j x_j \\
\text{s.t.} \quad& \sum^n_{j = 1} c_j x_j \leq B \\
& x_j \in \left\{ 0, 1 \right\}, \ \forall j = 1, \ldots, n.
\end{align}
\]
Logical Conditions
A logical condition of investing in project 1 results in a must in investing in projects 2 and 3:
\[
\begin{align}
\max \quad& \sum^n_{j = 1} r_j x_j \\
\text{s.t.} \quad& \sum^n_{j = 1} c_j x_j \leq B \\
&x_1 \leq x_2 \\
&x_1 \leq x_3 \\
&x_j \in \left\{0, 1 \right\}, \ j = 1, \ldots, n.
\end{align}
\]