Skip to content

Least Squares

Polynomial Fitting

Suppose we have \(m\) pairs of data points \((a_1, \ b_1), \ldots, (a_m, \ b_m)\) and we'd like to fit a cubic polynomial:

\[ p(a) = b = x_0 + x_1 a + x_2 a^2 + x_3 a^3. \]

Let \(\mathbf{x} = \left[\begin{array}{ccc} x_0 & \ldots & x_3 \end{array} \right]\) be the coefficients of \(p(a)\). The residual can be written as:

\[ \begin{align} r(\mathbf{x}) &= \left[ \begin{array}{c} p(a_1) - b_1 \\ \vdots \\ p(a_m) - b_m \end{array} \right] = \left[ \begin{array}{c} p(a_1) \\ \vdots \\ p(a_m) \end{array} \right] - \left[ \begin{array}{c} b_1 \\ \vdots \\ b_m \end{array} \right] = \left[ \begin{array}{c} x_0 + x_1 a_1 + x_2 a^2_1 + x_3 a^3_1 \\ \vdots \\ x_0 + x_1 a_m + x_2 a^2_m + x_3 a^3_m \end{array} \right] - \left[ \begin{array}{c} b_1 \\ \vdots \\ b_m \end{array} \right] \\ &= \left[ \begin{array}{cccc} 1 & a_1 & a^2_1 & a^3_1 \\ \vdots & \ddots & \ddots & \vdots \\ 1 & a_m & a^2_m & a^3_m \end{array} \right] \left[ \begin{array}{c} x_0 \\ x_1 \\ x_2 \\ x_3 \end{array} \right] - \left[ \begin{array}{c} b_1 \\ \vdots \\ b_m \end{array} \right] \\ &= \mathbf{A} \mathbf{x} - \mathbf{b}. \end{align} \]

The matrix \(\mathbf{A}\) is called the Vandermonde matrix.