Golden Section
Golden section method is a derivative-free method designed for univariate functions.
Algorithm: Golden Section
Start with an initial inverval \(\left[ x_l, x_u \right]\) containing the minima and successively narrow this interval.
\(\quad\) 0. Set \(x_1 = x_u - \alpha(x_u - x_l)\) and \(x_2 = x_l + \alpha(x_u - x_l)\). Compute \(f(x)\) at \(x_l, x_1, x_2, x_u\).
\(\quad\) 1. If \((x_u - x_l) \leq \epsilon\), stop and return \(x^* = 0.5 (x_l + x_u)\) as the minima.
\(\quad\) 2. If \(f(x_1) < f(x_2)\), set \(x_u \leftarrow x_2\), \(x_2 \leftarrow x_1\), and \(x_1 \leftarrow x_u - \alpha (x_u - x_l)\). Evaluate \(f(x_1)\).
\(\quad\quad\)Else, set \(x_l \leftarrow x_1\), \(x_1 \leftarrow x_2\), and \(x_2 \leftarrow x_l + \alpha(x_u - x_l)\). Evaluate \(f(x_2)\). Go to step 1.Use \(\alpha = 0.618\), the Golden Ratio.