Skip to content

Matrix Properties

Quadratic Forms

The (scalar) function of the real vector \(\mathbf{x} \in \mathbb{R}^n\):

\[ \begin{align} q = \mathbf{x}^T \mathbf{A} \mathbf{x} &= \left[ \begin{array}{ccc} x_1 & \ldots & x_n \end{array} \right] \left[ \begin{array}{ccc} A_{11} & \ldots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \ldots & A_{nn} \end{array} \right] \left[ \begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] \\ &= \left[ \begin{array}{ccc} \sum_i x_i A_{i1} & \ldots & \sum_i x_i A_{in} \end{array} \right] \left[ \begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] \\ &= \sum_{i, j} x_i x_j A_{ij}, \end{align} \]

is called a quadratic form. \(\mathbf{A}\) is positive semidefinite iff \(\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0\), \(\forall\mathbf{x} \neq \mathbf{0}\) and positive definite iff \(\mathbf{x}^T \mathbf{A} \mathbf{x} > 0\), \(\forall\mathbf{x} \neq \mathbf{0}\). A matrix is positive (semi)definite if and only if all its eigenvalues are positive (nonnegative).

Inequality of Two Matrices

The matrix \(\mathbf{A}\) is smaller (not larger) than the matrix \(\mathbf{B}\) if and only if \(\mathbf{B} - \mathbf{A}\) is positive (semi) definite.

Condition Number

The condition number of a positive definite symmetric matrix is defined as:

\[ \kappa(\mathbf{A}) \triangleq \log_{10} \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}. \]

Large condition numbers indicate near-singularty (e.g., \(\kappa > 6\) for a 32-bit computer indicates an ill-conditioned matrix).