Skip to content

Distributions

Uniform Distribution

The theoretical model for random sampling is the uniform distribution.

Continuous Discrete
pdf/pmf \(p(x) = \mathcal{U}(x; a, b) \triangleq \begin{cases} \begin{alignat*}{2} &\frac{1}{b - a}, \quad &&a \leq x \leq b, \\ &0, \quad &&\text{else}. \end{alignat*} \end{cases}\)
CDF \(P_x(\xi) = \begin{cases} \begin{alignat*}{2} &0, \quad && \xi < a, \\ &\frac{\xi - a}{b - a}, \quad &&a \leq \xi \leq b, \\ &1, \quad &&\xi > b. \end{alignat*} \end{cases}\) \(\begin{align*} P_x(a, b) = \frac{\lfloor x \rfloor - a + 1}{b - a + 1} \end{align*}\)
Expectation \(\begin{align*} \mathbb{E} \left[ x \right] = \frac{b + a}{2}\end{align*}\) \(\begin{align*} \mathbb{E} \left[ x \right] = \frac{b + a}{2}\end{align*}\)
Variance \(\begin{align*}\mathbb{V}\text{ar}(x) = \frac{(b - a)^2}{12}\end{align*}\) \(\begin{align*}\mathbb{V}\text{ar}(x) = \frac{n^2 - 1}{12}, \end{align*}\)
where \(n = b - a + 1\)

Gaussian Distribution

Continuous
pdf \(\begin{align*} p(x) = \mathcal{N}(x; \mu; \sigma^2) \triangleq \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{(x - \mu)^2}{2 \sigma^2} \right\} \end{align*}\)
CDF \(\begin{align*} P_x(\xi) &= \int^{\xi}_{-\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}dx \\ &= \int^{(\xi - \mu) / \sigma}_{-\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\eta^2 / 2 \right\} d \eta \\ &=\int^{(\xi - \mu) / \sigma}_{-\infty} \mathcal{N}(\eta; 0, 1)d \eta \triangleq \mathcal{G}\left(\frac{\xi - \mu}{\sigma} \right), \end{align*}\)
where \(\mathcal{G}\) is the cumulative standard Gaussian distribtuion.
Standardization \(\begin{align*} x \sim \mathcal{N}(\mu, \sigma^2) \longrightarrow z = \frac{x - \mu}{\sigma} \sim \mathcal{N}(0, 1) \end{align*}\)
Sigma Rules Sigma rules (also known as empirical rule) state that for any normal distribution, the probability that an observation will fall in the interval \(\mu \pm k\sigma\) for \(k = 1, 2, 3\) is \(68.27\%\), \(95.45\%\), and \(99.73\%\), respectively. More precisely:

\(\begin{align*} &\mathbb{P}\left\{\mu - \sigma < x < \mu + \sigma\right\} = \mathbb{P}\left\{-1 < z < 1\right\} = P_z(1) - P_z(-1) = 0.6827 \\ &\mathbb{P}\left\{\mu - 2\sigma < x < \mu + 2\sigma\right\} = \mathbb{P}\left\{-2 < z < 2\right\} = P_z(2) - P_z(-2) = 0.9545 \\ &\mathbb{P}\left\{\mu - 3\sigma < x < \mu + 3\sigma\right\} = \mathbb{P}\left\{-3 < z < 3\right\} = P_z(3) - P_z(-3) = 0.9973 \\ \end{align*}\)

Poisson Distribution

Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occuring in a fixed interval of time, or space if these events occur with a known constant rate, \(\lambda\) and independently of the time since the last event.

Discrete
pmf \(\begin{align*} p(x) = \mathbb{P}(x = n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n = 0, 1, \ldots \end{align*}\)
Moment-Generating Function \(\begin{align*} m_x(t) &= \mathbb{E}\left[ e^{t x} \right] = \sum^{n}_{i = 1} \mu_i e^{t \xi_i} \\ &= \sum^{n}_{i = 1} \frac{\lambda^i}{i!} e^{-\lambda} e^{ti} \\ &= e^{-\lambda} \sum^{n}_{i = 1} \frac{(\lambda e^{t})^i}{i!} \\ &= e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)} \end{align*}\)
Expectation \(\begin{align*}\mathbb{E}\left[ x \right] = \frac{d m_x(t)}{dt} \rvert_{t = 0} = e^{\lambda(e^t - 1)} \lambda e^{t} \rvert_{t = 0} = \lambda \end{align*}\)
Variance \(\lambda\)

Figure 1 shows the pmf and CDF example Poisson distributions.

poisson_distribution poisson_distribution

Figure 1 Poisson distribution PMF and CDF

Exponential Distribution

The exponential distribution has an important connection to the Poisson distribution. It is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rage.

Continuous
pdf \(p(x, \lambda) = \begin{cases}\begin{alignat*}{2}&\lambda e^{-\lambda x} \quad &&x \geq 0, \\&0 \quad &&\text{else}\end{alignat*}\end{cases}\)
CDF \(P_x(\xi) = \begin{cases}\begin{alignat*}{2}&1 - e^{-\lambda \xi} \quad &&\xi \geq 0, \\&0 && \text{else}\end{alignat*}\end{cases}\)
Moment-Generating Function \(\begin{align*}m_x(t) = \lambda / (\lambda - t),\end{align*}\)
for \(t < \lambda\)
Expectation \(1 / \lambda\)
Variance \(1 / \lambda^2\)

Figure 2 shows the pdf and CDF for example exponential distributions.

exponential_distribution exponential_distribution

Figure 2 Exponential distribution PDF and CDF

Gamma and Inverse Gamma Distributions

The gamma distribution is an extension of the exponential distribution. The gamma function is defined as \(\Gamma(x) = \int^{\infty}_0 t^{x - 1} e^{-t} dt\) for \(x > 0\). If \(n\) is a positive integer, \(\Gamma(n) = (n - 1)!\).

Continuous
Gamma pdf \(p(x) = \mathcal{Ga}(r, \lambda) = \begin{cases}\begin{alignat}{2}& \frac{\lambda^r}{\Gamma(r)} x^{r - 1} e^{-\lambda x} \quad &&x \geq 0, \\& 0 \quad &&\text{else}\end{alignat}\end{cases}\),

where \(r > 0\) is called the shape and \(\lambda >0\) is the rate
Gamma Moment-Generating Function \(\begin{align*} m_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^r\end{align*}\),

where \(r = 1\) is the exponential distribution
Gamma Expectation \(r / \lambda\)
Gamma Variance \(r / \lambda^2\)
Inverse Gamma pdf \(p(x) = \mathcal{IG}(r, \lambda) = \begin{cases}\begin{alignat}{2}& \frac{\lambda^r}{\Gamma(r) x^{r + 1}} e^{-\lambda / x} \quad && x \geq 0, \\&0 \quad && \text{else}\end{alignat}\end{cases}\)

Figure 3 shows the pdf for example gamma distributions.

gamma_distribution gamma_distribution

Figure 3 Gamma function and gamma distributions

Other Important Distributions

  1. Geometric distribution
  2. Multinomial distribution
  3. Logistic distribution
  4. Beta distribution
  5. Weibull distribution