Distributions
Uniform Distribution
The theoretical model for random sampling is the uniform distribution.
Continuous | Discrete | |
---|---|---|
pdf/pmf | \(p(x) = \mathcal{U}(x; a, b) \triangleq \begin{cases} \begin{alignat*}{2} &\frac{1}{b - a}, \quad &&a \leq x \leq b, \\ &0, \quad &&\text{else}. \end{alignat*} \end{cases}\) | |
CDF | \(P_x(\xi) = \begin{cases} \begin{alignat*}{2} &0, \quad && \xi < a, \\ &\frac{\xi - a}{b - a}, \quad &&a \leq \xi \leq b, \\ &1, \quad &&\xi > b. \end{alignat*} \end{cases}\) | \(\begin{align*} P_x(a, b) = \frac{\lfloor x \rfloor - a + 1}{b - a + 1} \end{align*}\) |
Expectation | \(\begin{align*} \mathbb{E} \left[ x \right] = \frac{b + a}{2}\end{align*}\) | \(\begin{align*} \mathbb{E} \left[ x \right] = \frac{b + a}{2}\end{align*}\) |
Variance | \(\begin{align*}\mathbb{V}\text{ar}(x) = \frac{(b - a)^2}{12}\end{align*}\) | \(\begin{align*}\mathbb{V}\text{ar}(x) = \frac{n^2 - 1}{12}, \end{align*}\) where \(n = b - a + 1\) |
Gaussian Distribution
Continuous | |
---|---|
\(\begin{align*} p(x) = \mathcal{N}(x; \mu; \sigma^2) \triangleq \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{(x - \mu)^2}{2 \sigma^2} \right\} \end{align*}\) | |
CDF | \(\begin{align*} P_x(\xi) &= \int^{\xi}_{-\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}dx \\ &= \int^{(\xi - \mu) / \sigma}_{-\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\eta^2 / 2 \right\} d \eta \\ &=\int^{(\xi - \mu) / \sigma}_{-\infty} \mathcal{N}(\eta; 0, 1)d \eta \triangleq \mathcal{G}\left(\frac{\xi - \mu}{\sigma} \right), \end{align*}\) where \(\mathcal{G}\) is the cumulative standard Gaussian distribtuion. |
Standardization | \(\begin{align*} x \sim \mathcal{N}(\mu, \sigma^2) \longrightarrow z = \frac{x - \mu}{\sigma} \sim \mathcal{N}(0, 1) \end{align*}\) |
Sigma Rules | Sigma rules (also known as empirical rule) state that for any normal distribution, the probability that an observation will fall in the interval \(\mu \pm k\sigma\) for \(k = 1, 2, 3\) is \(68.27\%\), \(95.45\%\), and \(99.73\%\), respectively. More precisely: \(\begin{align*} &\mathbb{P}\left\{\mu - \sigma < x < \mu + \sigma\right\} = \mathbb{P}\left\{-1 < z < 1\right\} = P_z(1) - P_z(-1) = 0.6827 \\ &\mathbb{P}\left\{\mu - 2\sigma < x < \mu + 2\sigma\right\} = \mathbb{P}\left\{-2 < z < 2\right\} = P_z(2) - P_z(-2) = 0.9545 \\ &\mathbb{P}\left\{\mu - 3\sigma < x < \mu + 3\sigma\right\} = \mathbb{P}\left\{-3 < z < 3\right\} = P_z(3) - P_z(-3) = 0.9973 \\ \end{align*}\) |
Poisson Distribution
Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occuring in a fixed interval of time, or space if these events occur with a known constant rate, \(\lambda\) and independently of the time since the last event.
Discrete | |
---|---|
pmf | \(\begin{align*} p(x) = \mathbb{P}(x = n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n = 0, 1, \ldots \end{align*}\) |
Moment-Generating Function | \(\begin{align*} m_x(t) &= \mathbb{E}\left[ e^{t x} \right] = \sum^{n}_{i = 1} \mu_i e^{t \xi_i} \\ &= \sum^{n}_{i = 1} \frac{\lambda^i}{i!} e^{-\lambda} e^{ti} \\ &= e^{-\lambda} \sum^{n}_{i = 1} \frac{(\lambda e^{t})^i}{i!} \\ &= e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)} \end{align*}\) |
Expectation | \(\begin{align*}\mathbb{E}\left[ x \right] = \frac{d m_x(t)}{dt} \rvert_{t = 0} = e^{\lambda(e^t - 1)} \lambda e^{t} \rvert_{t = 0} = \lambda \end{align*}\) |
Variance | \(\lambda\) |
Figure 1 shows the pmf and CDF example Poisson distributions.
Exponential Distribution
The exponential distribution has an important connection to the Poisson distribution. It is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rage.
Continuous | |
---|---|
\(p(x, \lambda) = \begin{cases}\begin{alignat*}{2}&\lambda e^{-\lambda x} \quad &&x \geq 0, \\&0 \quad &&\text{else}\end{alignat*}\end{cases}\) | |
CDF | \(P_x(\xi) = \begin{cases}\begin{alignat*}{2}&1 - e^{-\lambda \xi} \quad &&\xi \geq 0, \\&0 && \text{else}\end{alignat*}\end{cases}\) |
Moment-Generating Function | \(\begin{align*}m_x(t) = \lambda / (\lambda - t),\end{align*}\) for \(t < \lambda\) |
Expectation | \(1 / \lambda\) |
Variance | \(1 / \lambda^2\) |
Figure 2 shows the pdf and CDF for example exponential distributions.
Gamma and Inverse Gamma Distributions
The gamma distribution is an extension of the exponential distribution. The gamma function is defined as \(\Gamma(x) = \int^{\infty}_0 t^{x - 1} e^{-t} dt\) for \(x > 0\). If \(n\) is a positive integer, \(\Gamma(n) = (n - 1)!\).
Continuous | |
---|---|
Gamma pdf | \(p(x) = \mathcal{Ga}(r, \lambda) = \begin{cases}\begin{alignat}{2}& \frac{\lambda^r}{\Gamma(r)} x^{r - 1} e^{-\lambda x} \quad &&x \geq 0, \\& 0 \quad &&\text{else}\end{alignat}\end{cases}\), where \(r > 0\) is called the shape and \(\lambda >0\) is the rate |
Gamma Moment-Generating Function | \(\begin{align*} m_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^r\end{align*}\), where \(r = 1\) is the exponential distribution |
Gamma Expectation | \(r / \lambda\) |
Gamma Variance | \(r / \lambda^2\) |
Inverse Gamma pdf | \(p(x) = \mathcal{IG}(r, \lambda) = \begin{cases}\begin{alignat}{2}& \frac{\lambda^r}{\Gamma(r) x^{r + 1}} e^{-\lambda / x} \quad && x \geq 0, \\&0 \quad && \text{else}\end{alignat}\end{cases}\) |
Figure 3 shows the pdf for example gamma distributions.