Finite Impulse Response Filters
Overview
Given a finite duration of nonzero input values, an FIR filter will always have a finite duration of nonzero output values. No previous filter output value is used to determine a current output value; only input values are used to calculate output values.
Designing FIR Filters
Define \(H(m)\) over the frequency span \(-f_s / 2\) to \(f_s / 2\).
Algebraic | ||
---|---|---|
Coefficient Determination |
|
|
Inverse DFT | \(\begin{align*}h(k) &= \frac{1}{N} \sum^{N / 2}_{m = -(N / 2) + 1} H(m) \exp \left\{j 2 \pi m k / N \right\} \\ &= \frac{1}{N} \frac{\sin\left( \pi k K / N \right)}{\sin \left(\pi k / N \right)}\end{align*}\) |